

Measurement report: Effects of photochemical aging on the formation

and evolution of summertime secondary aerosol in Beijing

Tianzeng Chen^a, Jun Liu^{a, c}, Qingxin Ma^{a, b, c, *}, Biwu Chu^{a, b, c}, Peng Zhang^a, Jinzhu Ma^{a, b, c},

Yongchun Liu^d, Cheng Zhong^{a, c}, Pengfei Liu^a, Yafei Wang^e, Yujing Mu^{a, b, c}, Hong He^{a, b, c}

^a State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for

Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

^b Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment,

Chinese Academy of Sciences, Xiamen 361021, China

c University of Chinese Academy of Sciences, Beijing 100049, China

^d Beijing Advanced Innovation center for Soft Matter Science and Engineering, Beijing University

of Chemical Technology, Beijing 100029, China

^eBeijing Institute of Petrochemical Technology, Beijing 102617, China

Corresponding author: qxma@rcees.ac.cn (Qingxin Ma)

1 Abstract

2	Atmospheric submicron aerosols have a great effect on air quality and human health, while
3	their formation and evolution processes are still not fully understood. Herein, the crucial role of
4	atmospheric oxidation capacity, as characterized by OH exposure dose in the formation and
5	evolution of secondary submicron aerosols, was systematically investigated based on a highly time-
6	resolved chemical characterization of PM_1 in a southern suburb of Beijing in summertime from 25^{th}
7	July to 21^{st} August 2019. The averaged concentration of PM1 was 19.3 \pm 11.3 μg m 3, and nearly
8	half (48.3%) of the mass was organic aerosols (OA) during the observation period. The equivalent
9	photochemical age (t_a) estimated from the ratios of toluene to benzene was applied to characterize
10	the OH exposure dose of the air mass. The relationships of NR-PM $_1$ species, OA factors (i.e., one
11	hydrocarbon-like (HOA) and three oxygenated (LO-OOA, SV-OOA and MO-OOA) organic
12	aerosol factors) and elemental compositions (e.g., H/C, O/C, N/C, S/C, OM/OC, and OSc) to t_a were
13	analyzed in detail. It was found that higher PM_1 concentration accompanied longer t_a , with an
14	average increase rate of 0.8 μg m $^{-3}$ per hour. Meanwhile, the formation of SO4 $^{2\text{-}}$ and MO-OOA were
15	most sensitive to the increase in t_a , and their contributions to PM ₁ were enhanced from 19% to 27%
16	and from 27% to 48%, respectively, as t_a increased from 9.4 h to 19.6 h. In addition, OSc and the
17	ratios of O/C and OM/OC increased with the increase in $t_{\rm a}$. These results indicated that
18	photochemical aging is a key factor leading to the evolution of OA and the increase of $\ensuremath{\text{PM}}_1$ in
19	summertime.

20 Keywords

21 PM₁; Aerosol mass spectrometer; Photochemical age; Atmospheric oxidation capacity; Positive

22 matrix factorization

23 **1 Introduction**

24	Fine particulate matter (PM _{2.5}) is one of the major atmospheric environmental problems owing
25	to its effects on air quality, human health, and climate (IPCC, 2013; Davidson et al., 2005; Molina
26	and Molina, 2004). In recent years, the $PM_{2.5}$ concentration in China exhibited a significant decrease
27	with the implementation of the measures and strict policies in the Air Pollution Prevention and
28	Control Action Plan (Action Plan) (Zhang et al., 2019). However, the nationwide annual average
29	concentration of $PM_{2.5}$ is still greater than the standard of the World Health Organization (WHO)
30	and $PM_{2.5}$ is the primary pollutant in many regions, especially in the North China Plain (NCP).
31	Beijing, one of the most polluted megacities in the NCP, is also facing severe $PM_{2.5}$ pollution. The
32	annual mean concentration in Beijing was 51 $\mu g~m^{\text{-}3}$ in 2018 (http://sthjj.beijing.gov.cn/), which
33	significantly exceeds the Chinese National Ambient Air Quality Standard (annual average of 35 μg
34	m^3) and the WHO Standard (annual average of 10 μg m^3). Continuing to reduce the $PM_{2.5}$
35	concentration is an important issue in improving the air quality in Beijing.
36	It has been well recognized that secondary aerosols (SA), including secondary inorganic
37	aerosol (SIA) and secondary organic aerosol (SOA), are the crucial constituents (30-77%) of $PM_{2.5}$
38	(Xie et al., 2020; An et al., 2019; Sun et al., 2016a; Guo et al., 2014; Huang et al., 2014). However,
39	the formation and evolution mechanism of SA is still not well understood, mainly due to multiple
40	precursors, complex formation processes, and meteorological conditions (Chen et al., 2020; Duan
41	et al., 2020; Chen et al., 2019a; Duan et al., 2019; Hua et al., 2018; Li et al., 2018a; Tie et al., 2017;
42	Sun et al., 2015). Therefore, from the perspective of precise $PM_{2.5}$ control, in-depth understanding
43	of the processes related to SA formation and evolution is crucial.

44 The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) has

45	the advantage of real-time measurement of non-refractory submicron aerosol (NR-PM1) with high
46	time resolution and sensitivity, compared to filter measurements (DeCarlo et al., 2006). As a result,
47	HR-ToF-AMS measurements have been widely employed for illustrating the formation and
48	evolution of PM in China (Chen et al., 2020; Xu et al., 2019b; Wu et al., 2018; Ge et al., 2017; Ye
49	et al., 2017; Qin et al., 2016; Sun et al., 2016a; Huang et al., 2015; Li et al., 2015; Xu et al., 2014;
50	Li et al., 2013). Many previous field observation studies have inspected the formation mechanism
51	and process of SA (Huang et al., 2019; Shi et al., 2019; Sun et al., 2018a,b; Wang et al., 2017; Xu
52	et al., 2017; Cheng et al., 2016; Wang et al., 2016; Sun et al., 2016b; Sun et al., 2014). For example,
53	studies showed that an aqueous-phase process could be an important pathway in the formation of
54	SO_4^{2-} (Elser et al., 2016) and NO_3^{-} (Duan et al., 2020). However, most recent studies suggested that
55	SO_4^{2-} formation was also associated with a photochemical process, which is closely related to the
56	meteorological conditions, especially in summertime (Chen et al., 2020; Duan et al., 2019). In terms
57	of SOA, its contribution to fine particles was reported to be as important as SIA during haze events
58	in China (Huang et al., 2014). However, the formation mechanism of SOA is much less understood
59	compared to SIA because SOA consist of various organic species with different oxidation degrees.
60	Meanwhile, based on the organics database measured by HR-ToF-AMS, positive matrix
61	factorization (PMF) analysis, one receptor model (Paatero and Tapper, 1994), has been employed
62	to distinguish and quantify multiple OA factors (Hu et al., 2016; Sun et al., 2016b). Studies have
63	found that photochemical and aqueous-phase processes played different roles in the evolution of
64	SOA, which depended on the level of atmospheric oxidation capacity (e.g., total oxidant O_x (= O_3
65	+ NO ₂)), relative humidity (RH), seasons and regions (Chen et al., 2020; Feng et al., 2019; Wang et
66	al., 2017; Xu et al., 2017). For example, an aqueous-phase process was reported to have a significant

67	effect on the formation of less-oxidized oxygenated OA (LO-OOA) and more-oxidized oxygenated
68	OA (MO-OOA) at low levels of atmospheric oxidation capacity in wintertime Baoji, Shaanxi (Wang
69	et al., 2017). However, Xu et al. (2017) demonstrated that the formation of MO-OOA was
70	significantly dominated by the aqueous-phase process, while LO-OOA was closely correlated with
71	the photochemical process in urban Beijing (Xu et al., 2017). These inconsistences highlight the
72	necessity of studying the role of atmospheric chemical processes in the formation and evolution of
73	different types of SOA.
74	Previous studies have revealed some important factors (e.g., seasonal variation, meteorological
75	factors, and pollution degree) that influence the formation and evolution of PM1 in Beijing, based
76	on AMS observations (Hu et al., 2016; Sun et al., 2013b; Sun et al., 2012, Sun et al., 2013a, and
77	Zhang et al., 2014, respectively). Nevertheless, it should be pointed out that as the $PM_{2.5}$
78	concentration decreases, the ozone (O ₃) concentration increases year by year (Li et al., 2019b; Zhang
79	et al., 2019). O ₃ has become the primary air pollutant in summertime in the NCP and has caused the
80	enhancement of atmospheric oxidation capacity. Therefore, there is an urgent need to investigate
81	the impact of these changes on the atmospheric oxidation capacity and the formation and evolution
82	of PM ₁ . Moreover, it should be noted that most previous AMS observations in Beijing were carried
83	out in urban areas (Duan et al., 2020; Xu et al., 2019b; Wang et al., 2018; Li et al., 2017; Xu et al.,
84	2017; Hu et al., 2016; Zhang et al., 2014; Sun et al., 2013a,b; Sun et al., 2012; Liu et al., 2012;
85	Huang et al., 2010; Sun et al., 2010), while few studies were deployed in suburban areas (Chen et
86	al., 2020; Li et al., 2019a). Considering the different meteorological factors and emission sources,
87	the contribution of different formation and evolution pathways to PM_1 in urban and suburban areas
88	could be different.

- 89 In this study, a field observation, mainly using HR-ToF-AMS, was conducted from 25th July to
- 90 21st August 2019 in a typical suburban site in Daxing District, which is the south gate of Beijing.
- 91 The observation site lies in the air pollution transport channel between Beijing and Hebei province.
- 92 Based on the measurement results of a series of gas- and particle-phase monitoring instruments, the
- 93 chemical composition of NR-PM₁, elemental ratios, and source categories of OA were analyzed.
- 94 Moreover, the formation and evolution of secondary aerosols were elucidated. Specifically, the
- 95 effects of atmospheric oxidation capacity, which was characterized using the equivalent
- 96 photochemical age (t_a) , on the formation of secondary aerosols were discussed.

97 2 Experimental methods

98 2.1 Sampling site

99 The online field observation was carried out in the top floor of a building (9th, ~27 m above 100 the ground) at the Qingyuan campus of Beijing Institute of Petrochemical Technology in Daxing 101 District (39.73°N, 116.33°E) from 25th July to 21st August 2019. The site is located between the 5th 102 ring road and the 6th ring road in the south of Beijing and is a typical suburban site. Additionally, 103 there is no additional source of pollution except for two adjacent streets (i.e., Xinghua Street and 104 Qingyuan Street, with a distance ~600 m).

106 The mass concentration and chemical composition of NR-PM₁ were simultaneously measured 107 by a HR-ToF-AMS (Aerodyne Research Inc. USA). The detailed principles of HR-ToF-AMS can 108 be found elsewhere (DeCarlo et al., 2006). Briefly, the aerosols are sampled through a critical orifice 109 and then concentrated into a narrow beam via an aerodynamic lens. The size of aerosol is determined 110 using the flight time of particles to the thermal vaporization and ionization chamber. Then the

111	aerosols are successively vaporized by a heated surface (~600 °C), ionized by electron ionization
112	(EI, 70 eV), and detected by a mass spectrometer detector. During this field observation, the HR-
113	ToF-AMS was operated under alternation of two modes, i.e., 2 min V mode and 2 min W mode.
114	Meanwhile, routine quality assurance and quality control procedures, mainly including the
115	calibration of inlet flow, ionization efficiency (IE), and aerosol sizing, were carried out regularly
116	every week according to the standard protocols, using pure dry mono-dispersed 300 nm $\rm NH_4 NO_3$
117	aerosols (Chen et al., 2019b; Drewnick et al., 2005) to guarantee the credibility of the HR-ToF-
118	AMS results. The size distribution and number concentration of aerosols with a mobility diameter
119	from 13.6 nm to 736.5 nm were also measured by a custom-built scanning mobility particle sizer
120	(Model 3082 equipped with 3776 CPC, TSI, USA).
121	The gas-phase species including NO_x , NO_y , SO_2 , O_3 , and CO were measured in real time by a
122	series of Thermo analyzer (Model 42i-TL, Model 42i-NOy, Model 43i, Model 49i, Model 48i,
123	respectively). The volatile organic compounds (VOCs) (e.g., benzene and toluene) concentrations
124	were measured on-line using a vacuum ultraviolet single-photon ionization time-of-flight mass
125	spectrometer (SPIMS-3000, Guangzhou Hexin Analytical Instrument Co., Ltd., China). These
126	instruments were calibrated periodically with the corresponding standard gas to ensure the accuracy
127	of the observation data. In addition, two Apresys Temperature Humidity Data Loggers (179-UTH,
128	Apresys, USA) were also used to measure the meteorological parameters including temperature (T)
129	and RH.
130	2.3 Data analysis
131	2.3.1 HR-ToF-AMS data analysis

131

132 The standard analysis software tool (SQUIRREL, Version 1.57I and PIKA, Version 1.16I)

133	written in Igor Pro (Version 6.37, Wavemetrics Inc., USA) was used to analyze the HR-ToF-AMS
134	data. In order to obtain the quantitative mass concentrations of different species (i.e., OA, $\mathrm{SO_4^{2-}}$,
135	NO_3 , NH_4^+ , and Cl), and considering that the aerosols were almost neutral and had been dried
136	before entering into the HR-ToF-AMS inlet, the collection efficiency factor (CE) was determined
137	according to the following equation (Middlebrook et al., 2012):
138	CE=max(0.45, 0.0833+0.9167×ANMF)
139	where ANMF is the mass fraction of NH4NO3 in NR-PM1. The default relative ionization efficiency
140	(RIE) values were used for OA (1.4), NO $_3^-$ (1.1), and Cl ⁻ (1.3) (Jimenez et al., 2003). As for NH $_4^+$
141	and $\mathrm{SO_4^{2-}}$, their RIE values were determined using the pure dry mono-dispersed NH ₄ NO ₃ and
142	(NH ₄) ₂ SO ₄ aerosols to be 4.0 and 1.2, respectively.
143	Elemental analysis (EA) was also executed using the "Improved-Ambient" method
144	(Canagaratna et al., 2015) to obtain the hydrogen-to-carbon ratio (H/C), oxygen-to-carbon ratio
145	(O/C), and organic-mass to organic-carbon ratio (OM/OC), as well as elemental ratios of N/C and
146	S/C. The average carbon oxidation state (OSc) can be approximated by 2×O/C-H/C and is a metric
147	describing the oxidation degree of atmospheric OA (Kroll et al., 2011).
148	2.3.2 PMF analysis of OA
149	Source apportionment of OA was executed using the PMF model to analysis the HR-ToF-AMS
150	mass spectral data to identify the main organic components and their sources (Zhang et al., 2011).
151	PMF, as a bilinear receptor model, can be expressed as the following equation (Paatero, 1997;
152	Paatero and Tapper, 1994):
153	X = GF + E
154	where ${\bf X}$ is the observed data matrix with dimensions of $n\times m.$ ${\bf G}$ is the factor contribution matrix
155	of dimensions $n \times p$, F is the factor profile matrix of dimensions $p \times m$, and E is the matrix of

156	residuals with dimensions of $n \times m.$ n, m, and p are the number of samples, species, and factors,
157	respectively.
158	A least-squares fitting method was used to minimize the object function Q, which is defined as
159	the sum of the squared residuals (e_{ij}) weighted by their degree of measurement uncertainty (σ_{ij}).
160	$Q = \sum_{i=1}^{n} \sum_{j=1}^{m} (e_{ij} / \sigma_{ij})^2$
161	In our study, the PMF software tool (PMF Evaluation Tool, PET, version 2.06) (Ulbrich et al.,
162	2009) written in Igor Pro (Version 6.37, Wavemetrics Inc., USA) was used to analyze the HR-ToF-
163	AMS mass spectra (m/z 12-170). The detailed steps have been expressed in Zhang et al. (2011).
164	According to the values of the signal-to-noise ratios (SNR), m/z with SNR in a range of 0.2-2 were
165	weak variables and down-weighted 2 times, and m/z with SNR less than 0.2 were bad variables and
166	directly removed. As for duplicate information, m/z 44 (CO ₂) and related m/z values (including 16
167	(O), 17 (HO), 18 (H ₂ O), and 28 (CO)) were also down-weighted. Then PMF was run for a range of
168	number of factors (from 1 to 5) and rotational parameters (FPEAK) (from -1 to 1 with a step of 0.2).
169	After considering multiple criteria, including mass spectral features, diurnal patterns, correlation
170	with external tracers, and temporal variations (Zhang et al., 2011), the best number of factors was
171	determined to be 4, including one hydrocarbon-like OA (HOA) and three oxygenated organic
172	aerosol factors (LO-OOA, SV-OOA and MO-OOA). The corresponding mass spectra, time series,
173	and diurnal variation, which are similar to our previous results observed in the same site during
174	summertime 2018 (Chen et al., 2020), are given in Fig. S1.
175	2.3.3 Photochemical age

176 In the ambient air, the reaction of benzene and toluene with O_3 and NO_3 radicals is very slow, 177 with reaction rate on the order of $<10^{-20}$ and $<10^{-16}$ cm³ molecule⁻¹ s⁻¹, respectively (Atkinson and

178	Arey, 2003), which is significantly lower than the reaction rate with OH radicals (10^{-12} cm ³
179	molecule ⁻¹ s ⁻¹). Thus, their degradation is dominated by reaction with OH radicals. Meanwhile, the
180	reaction rate of toluene with OH radicals is about five times that of benzene. Therefore, their
181	degradation rates in the ambient air are significantly different after being exhausted from an
182	emission source, which would lead to an observable change in their concentration ratio.
183	Consequently, the ratio of toluene to benzene is typically used to study the photochemical aging
184	process of localized air masses (Yuan et al., 2012; Parrish et al., 2007; de Gouw et al., 2005;
185	Gelencsér et al., 1997; McKeen et al., 1996).
186	In this study, the equivalent photochemical age (t_a) was calculated to characterize the OH
187	exposure dose of the air mass, as expressed in the following equation:
188	$t_{a} = \frac{1}{[OH](k_{toluene} - k_{benzene})} \times \left[ln\left(\frac{[toluene]}{[benzene]}\right)_{0} - ln\left(\frac{[toluene]}{[benzene]}\right) \right]$
188 189	$t_{a} = \frac{1}{[OH](k_{toluene} - k_{benzene})} \times \left[ln \left(\frac{[toluene]}{[benzene]} \right)_{0} - ln \left(\frac{[toluene]}{[benzene]} \right) \right]$ where [OH] is the average OH concentration in the ambient air and is assumed as 5.2×10^{6} molecule
188 189 190	$t_{\rm a} = \frac{1}{[{\rm OH}](k_{\rm toluene} - k_{\rm benzene})} \times \left[\ln\left(\frac{[{\rm toluene}]}{[{\rm benzene}]}\right)_0 - \ln\left(\frac{[{\rm toluene}]}{[{\rm benzene}]}\right) \right]$ where [OH] is the average OH concentration in the ambient air and is assumed as 5.2×10^6 molecule cm ⁻³ , which was the average daytime ambient OH concentration observed in summer of Beijing
188 189 190 191	$t_{a} = \frac{1}{[OH](k_{toluene} - k_{benzene})} \times \left[ln \left(\frac{[toluene]}{[benzene]} \right)_{0} - ln \left(\frac{[toluene]}{[benzene]} \right) \right]$ where [OH] is the average OH concentration in the ambient air and is assumed as 5.2×10^{6} molecule cm ⁻³ , which was the average daytime ambient OH concentration observed in summer of Beijing (Yang et al., 2017). $k_{toluene}$ and $k_{benzene}$ are the rate constants for the reactions of OH with toluene
188 189 190 191 192	$t_{\rm a} = \frac{1}{[\rm OH](k_{toluene} - k_{benzene})} \times \left[\ln\left(\frac{[\rm toluene]}{[\rm benzene]}\right)_0 - \ln\left(\frac{[\rm toluene]}{[\rm benzene]}\right) \right]$ where [OH] is the average OH concentration in the ambient air and is assumed as 5.2×10^6 molecule cm ⁻³ , which was the average daytime ambient OH concentration observed in summer of Beijing (Yang et al., 2017). $k_{toluene}$ and $k_{benzene}$ are the rate constants for the reactions of OH with toluene (5.63×10^{-12} cm ³ molecule ⁻¹ s ⁻¹) and benzene (1.22×10^{-12} cm ³ molecule ⁻¹ s ⁻¹), respectively
188 189 190 191 192 193	$t_{a} = \frac{1}{[OH](k_{toluene} - k_{benzene})} \times \left[ln \left(\frac{[toluene]}{[benzene]} \right)_{0} - ln \left(\frac{[toluene]}{[benzene]} \right) \right]$ where [OH] is the average OH concentration in the ambient air and is assumed as 5.2×10^{6} molecule cm ⁻³ , which was the average daytime ambient OH concentration observed in summer of Beijing (Yang et al., 2017). $k_{toluene}$ and $k_{benzene}$ are the rate constants for the reactions of OH with toluene (5.63×10^{-12} cm ³ molecule ⁻¹ s ⁻¹) and benzene (1.22×10^{-12} cm ³ molecule ⁻¹ s ⁻¹), respectively (Atkinson and Arey, 2003). $\left(\frac{[toluene]}{[benzene]} \right)_{0}$ is the emission concentration ratio of toluene and
188 189 190 191 192 193 194	$t_{a} = \frac{1}{[OH](k_{toluene} - k_{benzene})} \times \left[ln \left(\frac{[toluene]}{[benzene]} \right)_{0} - ln \left(\frac{[toluene]}{[benzene]} \right) \right]$ where [OH] is the average OH concentration in the ambient air and is assumed as 5.2×10^{6} molecule cm ⁻³ , which was the average daytime ambient OH concentration observed in summer of Beijing (Yang et al., 2017). $k_{toluene}$ and $k_{benzene}$ are the rate constants for the reactions of OH with toluene (5.63×10^{-12} cm ³ molecule ⁻¹ s ⁻¹) and benzene (1.22×10^{-12} cm ³ molecule ⁻¹ s ⁻¹), respectively (Atkinson and Arey, 2003). $\left(\frac{[toluene]}{[benzene]} \right)_{0}$ is the emission concentration ratio of toluene and benzene before aging in the atmosphere, and was determined to be 3.3 (Fig. S2, in the Supplement).
188 189 190 191 192 193 194 195	$t_{a} = \frac{1}{[OH](k_{toluene} - k_{benzene})} \times \left[ln \left(\frac{[toluene]}{[benzene]} \right)_{0} - ln \left(\frac{[toluene]}{[benzene]} \right) \right]$ where [OH] is the average OH concentration in the ambient air and is assumed as 5.2×10^{6} molecule cm ⁻³ , which was the average daytime ambient OH concentration observed in summer of Beijing (Yang et al., 2017). $k_{toluene}$ and $k_{benzene}$ are the rate constants for the reactions of OH with toluene (5.63×10^{-12} cm ³ molecule ⁻¹ s ⁻¹) and benzene (1.22×10^{-12} cm ³ molecule ⁻¹ s ⁻¹), respectively (Atkinson and Arey, 2003). $\left(\frac{[toluene]}{[benzene]} \right)_{0}$ is the emission concentration ratio of toluene and benzene before aging in the atmosphere, and was determined to be 3.3 (Fig. S2, in the Supplement). $\frac{[toluene]}{[benzene]}$ is the measured concentration ratio of toluene and benzene, which is given in Fig. S3a.

196 The diurnal variation of calculated t_a (Fig. S3b) followed a similar diurnal trend of OH radicals

197 observed in summertime of Beijing, which had a higher level at noon (Tan et al., 2019). Therefore,

198 this method can provide useful information on the photochemical process in the atmosphere (Yuan

199 et al., 2012; Parrish et al., 2007; de Gouw et al., 2005; McKeen et al., 1996).

200 **3 Results and discussion**

201 3.1 Chemical compositions of PM₁

202	The time series of mass concentrations of NR-PM1 species (i.e., OA, NO3 ⁻ , SO4 ²⁻ , NH4 ⁺ , and
203	Cl ⁻) and their relative contributions are summarized in Fig. 1. During this field observation, the
204	hourly mass concentrations of NR-PM1 was in the range of 2.2-64.3 μg m $^{-3},$ with an average of 19.3
205	\pm 11.3 μg m^-3, which is close to those observed in a suburb of Beijing in summer 2016 (14.2 \pm 9.4
206	μg m^-3, Li et al., 2019a) and summer 2018 (24.1 \pm 18.0 μg m^-3, Chen et al., 2020). However, this
207	averaged PM_1 concentration was much lower than those observed in urban Beijing in summertime,
208	such as 80 \pm 40.6 μg m $^{\text{-3}}$ in 2006 (Sun et al., 2010), 63.1 μg m $^{\text{-3}}$ in 2008 (Huang et al., 2010), 50 \pm
209	30 μg m $^{\text{-3}}$ in 2011 (Sun et al., 2012), and 37.5 \pm 31.0 μg m $^{\text{-3}}$ in 2012 (Hu et al., 2017). Meanwhile,
210	among all species in NR-PM1, OA contributed the most (48.3%), indicating the dominant role of
211	OA in summertime PM1 pollution (Chen et al., 2020; Hu et al., 2016; Sun et al., 2015; Zhang et al.,
212	2014). Moreover, the largest daily contribution of OA (> 80%) was observed during the clean period,
213	with PM_1 concentration less than 20 μg m $^{\text{-3}}$ (e.g., from 16 $^{\text{th}}$ August to 18 $^{\text{th}}$ August 2019, Fig. 1b).
214	With further improvement in air quality, PM_1 concentrations would decrease in the future. Then, the
215	contribution of OA in PM_1 is likely to increase. On the other hand, SIA accounted for 51.7% of NR-
216	PM_1 , in which SO_4^{2-} was the largest contributor (23.2%), followed by NO_3^- (14.3%), NH_4^+ (13.4%),
217	and Cl ⁻ (0.8%). Similar relative contributions of these species were also observed in a suburb of
218	Beijing in summer 2016, where OA contributed a mass fraction of 42-71%, followed by SO_4^{2-} (15-
219	27%), NO ₃ ⁻ (6-22%), NH ₄ ⁺ (8-13%), and Cl ⁻ (0.3-0.6%) (Li et al., 2019a). By comparison, NR-PM ₁
220	in urban Beijing in summertime had relatively low contribution of OA (33-40%) and high

221	contribution of SIA (58-65%) (Hu et al., 2017; Sun et al., 2012; Huang et al., 2010; Sun et al., 2010),
222	which may be due to the difference in the emissions of gaseous precursors (e.g., SO_2 and NO_x) and
223	their conversion ratio to SIA (Li et al., 2020; Hu et al., 2017). Meanwhile, the inorganic SO_4^{2-} , NO_3^{-} ,
224	and Cl ⁻ could be well neutralized by $\mathrm{NH_4^+}$ during this field observation since there is an extremely
225	good linear relationship between NO ₃ ⁻ +2×SO ₄ ²⁻ +Cl ⁻ and NH ₄ ⁺ ($R^2 = 0.998$, slope = 0.992 ± 0.002,
226	Fig. S4, in the Supplement). This implied the significant contribution of gaseous NH_3 to the
227	formation of SIA and $PM_{2.5}$. Therefore, NH_3 emission control in China should be strengthened in
228	the future to mitigate PM pollution (Liu et al., 2019b).
229	Figure 1 also presents the time series of total oxidant ($O_x = O_3 + NO_2$) and photochemical age
230	(t_a). In this study, t_a and O_x can be used to characterize the photochemical aging process undergone
231	and the total oxidant present in the ambient atmosphere, respectively. As shown in Fig. 1c, t_a showed
232	a similar evolutionary trend to that of O_x during this summertime observation, which is consistent
233	with the formation process of photochemical smog in the presence of NO_x , VOCs, and sunlight. It
234	is well known that the photochemical aging process of VOCs can enhance the formation of organic
235	peroxy radical (RO ₂) and hydroperoxy (HO ₂), which will then accelerate the cycle of NO _x and the
236	formation of O_3 in the atmosphere. Consequently, longer aging time (t_a) always corresponds to a
237	higher concentration of O ₃ and stronger atmospheric oxidation during summertime.

238

Figure 1. Overview of time series of (a) concentrations of NR-PM₁ species derived from HR-ToFAMS (left y axis) and SMPS (right y axis), (b) relative contributions of NR-PM₁ species, and (c)

241 concentration of total oxidant ($O_x = O_3 + NO_2$) and photochemical age (t_a) during this field 242 observation.

243 **3.2 Role of** *t***a in aerosol formation and composition**

In order to evaluate the effect of the photochemical aging process on PM_1 concentrations, the relationships among t_a , O_x , OA concentration, and binned PM_1 concentration were analyzed and shown in Fig. 2. Both t_a and O_x simultaneously rose with the increasing concentration of PM_1 . This

247	suggested that the photochemical aging process was closely related to the PM pollution level, and
248	that the photochemical process becomes more intensive with the increase of VOCs and Ox at higher
249	PM ₁ concentrations. In addition, the similar evolutionary trends of t_a and O_x during this summertime
250	observation further confirmed that they are closely correlated. Meanwhile, with the increase in t_a ,
251	concentrations of PM_1 and O_3 increased simultaneously (Fig. S5, in the Supplement), which
252	indicated that the formation of PM1 and O3 were both positively correlated with the photochemical
253	aging process during this summer observation. One reason is that high temperature observed at
254	elevated t_a levels (Fig. S6) increases the emission rates of biogenic VOCs (Fu et al., 2010), which
255	could promote the formation of O_3 and PM_1 (Li et al., 2019c; Schnell and Prather, 2017).
256	Considering that the concentration of NO _x decreased with increasing t_a (Fig. S6), this implied that
257	the formation of O_3 is in the VOC-sensitive regime during this observation. Under this condition,
258	increased VOCs will enhance the reactions between VOCs and OH, resulting in high production of
259	RO ₂ and O ₃ locally (Li et al., 2018b). The concentration of OA also persistently increased with t_a ,
260	which was consistent with the fact that SOA (predominant species in OA) mainly originated from
261	the photochemical process of VOCs (Fan et al., 2020; Fu et al., 2014; Hallquist et al., 2009). Higher
262	production of RO ₂ will be beneficial to the formation of low volatility species and new particle
263	formation (NPF) (Garmash et al., 2020; Tröstl et al., 2016), and then promote the formation of SOA
264	through gas-particle partitioning (Odum et al., 1996). These results implied that the formation and
265	evolution of PM pollution as well as OA was greatly dependent on the photochemical aging process
266	and total oxidant present during the summertime, which need to be deeply explored to understand
267	the growth of PM ₁ .

269 Figure 2. Relationship between PM_1 concentration and photochemical age (t_a) , total oxidant (O_x) ,

270 as well as OA concentration during this field observation. The data are binned according to PM_1

271 concentration (10 μ g m⁻³ increment).

268

272 To further investigate the role of t_a in aerosol formation, all NR-PM₁ species and OA factors 273 were normalized to HOA to exclude the accumulation and/or dilution effects in the atmosphere, and 274 the corresponding ratios as a function of t_a are given in Fig. 3. Although the HOA emissions vary 275 throughout the day and might bring some uncertainty, Sun et al. (2013a) indicated that this 276 uncertainty might be reduced and become insignificant when these databases are averaged (as a 277 function of t_a in this study). The normalized ratios of all NR-PM₁ species positively increased as a 278 function of t_a with different increase rates. At low t_a levels (< 15 h), relatively small ratios of all species could be observed, and all ratios showed a slight increase trend. However, at $t_a = 20-30$ h, 279 the normalized concentration of total NR-PM₁, OA, SO_4^{2-} , and NH_4^+ increased by a factor of > 5 280 281 compared with that at low t_a levels (< 15 h). This indicated that these species were susceptible to

282	photochemical aging processes in the summer, with strong solar radiation. Exponential fitting (y =
283	$A \times exp(x/B) + C$) was applied to quantitatively describe the relationship between these species and
284	$t_{\rm a}$, as given in Fig. 3. The fitting parameter B could be used to characterize the sensitivity of each
285	species to the increase of t_a , while smaller B means more sensitivity to t_a . According to the fitting
286	results, the formation of NR-PM ₁ was most sensitive to t_a , followed by SO ₄ ²⁻ , OA, and NH ₄ ⁺ in
287	sequence. Their average increase rates in absolute mass concentration (Fig. S7) showed the same
288	trend as the normalized ratios in Fig. 3. The average increase rate of SO_4^{2-} was the largest (0.4 µg
289	m ⁻³ per hour) among NR-PM ₁ species, while that of NR-PM ₁ was 0.8 μ g m ⁻³ per hour. These results
290	also suggested that the photochemical aging process plays an important role in $\mathrm{SO_4^{2^-}}$ formation in
291	summertime (Li et al., 2020). Previous studies have revealed that an aqueous-phase process plays
292	an important role in SO4 ²⁻ formation (Sun et al., 2015; Sun et al., 2013a). However, it appears that
293	photochemical oxidation was the primary pathway of SO42- formation in the present summertime
294	observation, as seen in the t_{a} - and RH-dependent distributions of SO ₄ ²⁻ (Fig. S8). Both the SO ₄ ²⁻
295	mass concentration and its proportion in PM_1 were highly dependent on t_a rather than RH. The
296	similar evolution trends of $\mathrm{NH_{4^+}}$ and $\mathrm{SO_{4^{2^-}}}$ suggested that $\mathrm{NH_{4^+}}$ mainly existed in the form of
297	(NH ₄) ₂ SO ₄ (apart from NH ₄ NO ₃ and NH ₄ Cl), which could be supported by the relative contributions
298	of these SIA species during this field observation (see Section 3.1). The formation of Cl ⁻ was also
299	boosted with increasing t_a , similar to that of NH ₄ ⁺ , which confirmed the combination Cl ⁻ with NH ₄ ⁺
300	in the form of NH ₄ Cl (Chen et al., 2020). As for NO ₃ ⁻ , the corresponding ratio first increased and
301	then slightly decreased as t_a increased, which was similar to the evolution trend of absolute mass
302	concentration (Fig. S7). It was worth noting that the concentration of NO_x decreased with increasing
303	t_a (Fig. S6), suggesting the photochemical oxidation of NO _x to HNO ₃ or NO ₃ ⁻ . This was in agreement

- 304 with the observation of high concentrations of NO_z ($NO_z = NO_y NO_x$) at elevated t_a levels (Fig.
- 305 S6). Meanwhile, high temperature accompanied high levels of t_a (Fig. S6), which could cause the
- 306 evaporation of NO₃⁻ or adsorbed HNO₃ into the gas phase (Xu et al., 2019a). As demonstrated by
- 307 the t_a and RH-dependent distributions of NO₃⁻ (Fig. S8), the aqueous-phase process made a
- 308 significant contribution to the formation of NO₃⁻ (Duan et al., 2020).

Figure 3. Variations of the ratios of mass concentrations of NR-PM₁ species and OA factors to HOA as a function of t_a . The data are binned according to the value of t_a (5 h increment). The solid lines are the results of exponential fitting with the function of $y = A \times exp(x/B) + C$.

Regarding the OA factors, they exhibited different dependence on t_a as presented in Fig. 3. Among these four OA factors, MO-OOA was most affected by the increase in t_a , with a factor of ~10 compared with that at low t_a levels (<15 h). The enhancement factor of LO-OOA with increased t_a was ~6, which might be due to its lower oxidation state (OSc = -0.34) than that of MO-OOA (OSc = -0.23). These results are consistent with the exponential fitting parameter B of MO-OOA and LO-

318	OOA in Fig. 3. The average increase rate of MO-OOA (0.3 $\mu g \ m^{-3}$ per hour) was also significantly
319	larger than that of LO-OOA, with a factor of ~7. As for SV-OOA, t_a exhibited a slight enhancement
320	effect, suggesting that photochemical aging may be not its main formation pathway. In contrast, the
321	normalized concentration of SV-OOA and its contribution to PM_1 significantly depended on RH
322	(Fig. S9), which was consistent with the results of Herrmann et al. (2015).
323	Figure 4 shows the averaged contributions of NR-PM1 species and OA factors at low and high
324	t_a levels. The average mass concentration of NR-PM ₁ at $t_a > 15$ h was 22.5 µg m ⁻³ , which was 1.4
325	times of that at $t_a < 15$ h. All NR-PM ₁ species were enhanced in mass concentration by a factor of
326	more than 1.1 at elevated t_a , of which SO ₄ ²⁻ had the largest enhancement factor of 2.1. OA was the
327	dominant species in NR-PM ₁ at both t_a levels, although its percentage decreased from 57% to 48%
328	with the increase of t_a . This decreased percentage could be attributed to the significantly decreased
329	contribution of HOA (from 39% to 20%) with the enhancement of t_a , suggesting that the
330	photochemical aging process was not conducive to the accumulation of HOA. Comparing the
331	contribution of other species to NR-PM ₁ at low and high t_a levels, it was found that the contribution
332	of NO ₃ ⁻ presented a decreasing trend (from 12% to 10%) as t_a increased, which could be attributed
333	to the lower concentration of NO _x , higher temperature and lower RH, as mentioned above. The
334	contribution of Cl ⁻ did not change with t_a level. The contributions of SO ₄ ²⁻ and NH ₄ ⁺ were enhanced
335	from 19% to 27% and 11% to 14%, respectively as t_a increased from 9.4 h to 19.6 h, which
336	confirmed that the formation of SO_4^{2-} greatly benefited from the photochemical process, and that
337	NH4 ⁺ mainly existed in the form of (NH4)2SO4 during this summertime observation.
338	The OA factors also presented different change trends and different compositions at high t_a

levels compared with those at low t_a levels. The OOA accounted for more than half of OA, and

340 showed much higher contribution at high t_a levels than at low t_a levels (61% vs. 80%). Among them, MO-OOA showed the largest enhancement, by a factor of 2.0 from 2.6 to 5.2 μ g m⁻³ in absolute 341 mass concentration, and a factor of 1.8 from 27% to 48% in relative contribution, indicating the 342 343 importance of MO-OOA in PM_1 pollution at elevated t_a during the summertime. The contributions 344 of LO-OOA and SV-OOA were almost equal (~24% and ~8%, respectively) between low and high 345 t_a levels, while the absolute mass concentrations were enhanced by a factor of >1.1 at high t_a levels. On the contrary, the absolute mass concentration of HOA decreased from 3.3 to 1.8 µg m⁻³ during 346 high t_a periods, indicating a negative effect of t_a on the accumulation of HOA. 347

348

Figure 4. Different chemical compositions of NR-PM₁ and OA factor contributions during the (a) low t_a (< 15 h) period, and (b) high t_a (> 15 h) period. The displayed PM₁, OA, and t_a are averages

³⁵¹ of values during the corresponding period.

352 **3.3 Role of** t_a in OA evolution

353	The role of t_a in the evolution of OA during the summertime was further examined. Fig. 5
354	shows the variations of H/C, O/C, N/C, S/C, OM/OC, and OSc as a function of t_a . All these
355	parameters except H/C increased with the increase of t_a . The decrease of H/C was related to the
356	decreased contribution of HOA (Fig. 4), since HOA had the highest H/C among these four OA
357	factors (Fig. S1). In contrast to H/C, O/C and OM/OC increased from 0.53 to 0.73 and 1.88 to 2.14 $$
358	with the increase of t_a , respectively. Moreover, a high correlation coefficient between OM/OC and
359	O/C was observed ($R^2 = 0.997$, Fig. S10, in the Supplement). These results suggest that OA was
360	highly oxidized due to the progress of atmospheric photochemical aging. Meanwhile, the analogous
361	variation between OSc and O/C confirmed the high oxidation state of OA, since both are metrics of
362	the oxidation degree of OA (Kroll et al., 2011). As for the variation of N/C and S/C, they presented
363	a slight increase trend with the increase in t_a . This indicated that photochemical processes could
364	contribute to the formation of N-containing and S-containing organics, which is consistent with
365	previous smog chamber simulations in the laboratory (Chen et al., 2019c,d).

366

Figure 5. Variations of H/C, O/C, N/C, S/C, OM/OC and OSc as a function of t_a . The data are binned according to the value of t_a (5 h increment).

The binned H/C and O/C as a function of t_a are given in Fig. 6. The fitted slope of -0.63 is 369 370 similar to those reported in both field observations and laboratory simulations on the photochemical aging of anthropogenic primary OA or biomass burning OA (Chen et al., 2015). This slope can be 371 372 obtained by a combination of the simultaneous addition of both alcohol (slope = 0) and carbonyl 373 (slope = -2) functional groups, or the addition of carboxylic acid with (slope = -0.5) and without (slope = -1) fragmentation (Peng et al., 2016; Chen et al., 2015; Ng et al., 2011; Heald et al., 2010). 374 375 Additionally, as t_a increased, the OA evolved from the left top region to the right bottom region of 376 the Van Krevelen diagram, accompanied by a decrease in H/C and increase in O/C. This further 377 indicated that the evolution process of OA was from less oxidized to more aged as the atmospheric

378 photochemical aging progressed, leading to higher PM₁ concentrations.

Figure 6. Van Krevelen diagram during this field observation. The data are binned according to the value of t_a (5 h increment) and color coded by t_a . The elemental composition of OA was fitted with a slope of -0.63 ($R^2 = 0.98$).

383 4 Conclusions

In this study, a summertime field observation mainly based on the Aerodyne HR-ToF-AMS was carried out to characterize NR-PM₁ in a southern suburb of Beijing from 25th July to 21st August 2019. The role of photochemical age (t_a) in aerosol formation and composition was analyzed. During this period, the averaged NR-PM₁ concentration was 19.3 ± 11.3 µg m⁻³; of NR-PM₁, OA was the dominant species (48-57%), followed by SO₄²⁻ (19-27%), NO₃⁻ (10-12%) at different t_a levels. Higher PM₁ concentrations were observed at longer t_a . Meanwhile, with the increase of t_a , the normalized ratios of NR-PM₁ species and OA factors to HOA were greatly enhanced by a factor

391	ot >5, especially for OA, $SO_4^{2^*}$, and MO-OOA. The total NR-PM ₁ presented the largest average
392	increase rate of 0.8 μg m $^{-3}$ per hour, followed by SO4 $^{2\text{-}}$ (0.4 μg m $^{-3}$ per hour) and MO-OOA (0.3 μg
393	m ⁻³ per hour). As t_a increased from 9.4 h to 19.6 h, the relative contribution of MO-OOA presented
394	the most obvious promotion from 27% to 48%, suggesting the significance of more-oxidized OA,
395	which mainly originates from the photo-oxidation of VOCs, in PM1 pollution during the
396	summertime with strong solar radiation. The evolution of OA was also greatly affected by t_a ,
397	decreased H/C and increased O/C could be found as t_a increased, along with the larger OSc and
398	OM/OC, indicating that OA went from less oxidized to more aged with the progression of
399	atmospheric photochemical aging, further leading to the higher PM1 concentration. Our results
400	suggested that the atmospheric photochemical aging process is a crucial factor resulting in the PM_1
401	pollution in summertime, especially for the formation and evolution of SOA. Previous studies have
402	indicated that NOx is a highly active species and has a great effect on the source of the main oxidants
403	(e.g., OH, O ₃ , and NO ₃) (Seinfeld and Pandis, 2016). Therefore, NO _x and VOCs, mainly from
404	vehicle-related emissions (Liu et al., 2019a; Qin et al., 2017), should be strictly controlled to lower
405	the atmospheric oxidation capacity characterized by OH exposure dose to further ease the PM
406	pollution in summertime.
407	Considering there would be differences in the formation and evolution of PM_1 between

different seasons, and few field observations have been conducted in suburban areas of Beijing, further works should be carried out to shed light on the seasonal variations of PM_1 and their formation and evolution mechanisms in different seasons in suburban areas. Additionally, the detailed role of photochemical age (t_a) in the formation of the secondary gaseous pollutant O_3 , as well as their relationship in different seasons, should also be of concern because O_3 has become the

413 primary air pollutant, especially in summertime.

414 **Declarations of interest**

415 The authors declare that they have no conflict of interest.

416 Acknowledgements

- 417 The authors are grateful to all workers for their support during this filed observation. The
- 418 authors acknowledge the National Natural Science Foundation of China (21922610, 21876185,
- 419 91744205, and 41877304), the Youth Innovation Promotion Association, CAS (2018055, 2018060,
- 420 and 2017064), and the Young Talent Project of the Center for Excellence in Regional Atmospheric
- 421 Environment, CAS (CERAE201801). The authors would also like to thank Ms. Qingcai Feng for
- 422 her help editing this paper.

423 Supplement

424 Supplementary data to this article can be found online.

425 Author contributions

- 426 HH, YM, YL, and QM designed this filed observation. TC, JL, and QM conducted the
- 427 measurements and data analyses. TC, JL, QM, BC, PZ, CZ, and YL interpreted and discussed the
- 428 data results. TC wrote the paper with input from all coauthors. All authors contributed to the final
- 429 paper.

430 **References**

- 431 An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.:
- 432 Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, Proc.
- 433 Natl. Acad. Sci. USA, 116, 8657-8666, 10.1073/pnas.1900125116, 2019.
- 434 Atkinson, R., and Arey, J.: Atmospheric degradation of volatile organic compounds, Chem. Rev., 103,

- 435 4605-4638, 10.1021/cr0206420, 2003.
- 436 Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz,
- 437 L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop,
- 438 D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry:
- 439 characterization, improved calibration, and implications, Atmos. Chem. Phys., 15, 253-272,
- 440 10.5194/acp-15-253-2015, 2015.
- 441 Chen, Q., Heald, C. L., Jimenez, J. L., Canagaratna, M. R., Zhang, Q., He, L.-Y., Huang, X.-F.,
- 442 Campuzano-Jost, P., Palm, B. B., Poulain, L., Kuwata, M., Martin, S. T., Abbatt, J. P. D., Lee, A. K. Y.,
- 443 and Liggio, J.: Elemental composition of organic aerosol: The gap between ambient and laboratory
- 444 measurements, Geophys. Res. Lett., 42, 4182-4189, 10.1002/2015gl063693, 2015.
- 445 Chen, T., Chu, B., Ge, Y., Zhang, S., Ma, Q., He, H., and Li, S.-M.: Enhancement of aqueous sulfate
- 446 formation by the coexistence of NO₂/NH₃ under high ionic strengths in aerosol water, Environ. Pollut.,
- 447 252, 236-244, https://doi.org/10.1016/j.envpol.2019.05.119, 2019a.
- 448 Chen, T., Liu, Y., Chu, B., Liu, C., Liu, J., Ge, Y., Ma, Q., Ma, J., and He, H.: Differences of the oxidation
- 449 process and secondary organic aerosol formation at low and high precursor concentrations, J. Environ.
- 450 Sci., 79, 256-263, 10.1016/j.jes.2018.11.011, 2019b.
- 451 Chen, T., Liu, Y., Liu, C., Liu, J., Chu, B., and He, H.: Important role of aromatic hydrocarbons in SOA
- 452 formation from unburned gasoline vapor, Atmos. Environ., 201, 101-109,
 453 10.1016/j.atmosenv.2019.01.001, 2019c.
- 454 Chen, T., Liu, Y., Ma, Q., Chu, B., Zhang, P., Liu, C., Liu, J., and He, H.: Significant source of secondary
- 455 aerosol: Formation from gasoline evaporative emissions in the presence of SO₂ and NH₃, Atmos. Chem.
- 456 Phys., 19, 8063-8081, 10.5194/acp-19-8063-2019, 2019d.

- 457 Chen, T., Liu, J., Liu, Y., Ma, Q., Ge, Y., Zhong, C., Jiang, H., Chu, B., Zhang, P., Ma, J., Liu, P., Wang,
- 458 Y., Mu, Y., and He, H.: Chemical characterization of submicron aerosol in summertime Beijing: A case
- 459 study in southern suburbs in 2018, Chemosphere, 247, 125918,
- 460 https://doi.org/10.1016/j.chemosphere.2020.125918, 2020.
- 461 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael,
- 462 G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during
- 463 haze events in China, Sci. Adv., 2, e1601530, 10.1126/sciadv.1601530, 2016.
- 464 Davidson, C. I., Phalen, R. F., and Solomon, P. A.: Airborne particulate matter and human health: a review,
- 465 Aerosol Sci. Tech., 39, 737-749, 10.1080/02786820500191348, 2005.
- 466 de Gouw, J. A., Middlebrook, A. M., Warneke, C., Goldan, P. D., Kuster, W. C., Roberts, J. M., Fehsenfeld,
- 467 F. C., Worsnop, D. R., Canagaratna, M. R., Pszenny, A. A. P., Keene, W. C., Marchewka, M., Bertman,
- 468 S. B., and Bates, T. S.: Budget of organic carbon in a polluted atmosphere: Results from the New England
- 469 Air Quality Study in 2002, J. Geophys. Res., 110, 10.1029/2004jd005623, 2005.
- 470 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., Gonin, M., Fuhrer,
- 471 K., Horvath, T., Docherty, K. S., Worsnop, D. R., and Jimenez, J. L.: Field-deployable, high-resolution,
- 472 time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281-8289, 10.1021/ac061249n, 2006.
- 473 Drewnick, F., Hings, S. S., DeCarlo, P., Jayne, J. T., Gonin, M., Fuhrer, K., Weimer, S., Jimenez, J. L.,
- 474 Demerjian, K. L., Borrmann, S., and Worsnop, D. R.: A new time-of-flight aerosol mass spectrometer
- 475 (TOF-AMS)—instrument description and first field deployment, Aerosol Sci. Tech., 39, 637-658,
- 476 10.1080/02786820500182040, 2005.
- 477 Duan, J., Huang, R. J., Lin, C., Dai, W., Wang, M., Gu, Y., Wang, Y., Zhong, H., Zheng, Y., Ni, H., Dusek,
- 478 U., Chen, Y., Li, Y., Chen, Q., Worsnop, D. R., O'Dowd, C. D., and Cao, J.: Distinctions in source regions

- 479 and formation mechanisms of secondary aerosol in Beijing from summer to winter, Atmos. Chem. Phys.,
- 480 19, 10319-10334, 10.5194/acp-19-10319-2019, 2019.
- 481 Duan, J., Huang, R. J., Li, Y., Chen, Q., Zheng, Y., Chen, Y., Lin, C., Ni, H., Wang, M., Ovadnevaite, J.,
- 482 Ceburnis, D., Chen, C., Worsnop, D. R., Hoffmann, T., O'Dowd, C., and Cao, J.: Summertime and
- 483 wintertime atmospheric processes of secondary aerosol in Beijing, Atmos. Chem. Phys., 20, 3793-3807,
- 484 10.5194/acp-20-3793-2020, 2020.
- 485 Elser, M., Huang, R. J., Wolf, R., Slowik, J. G., Wang, Q., Canonaco, F., Li, G., Bozzetti, C., Daellenbach,
- 486 K. R., Huang, Y., Zhang, R., Li, Z., Cao, J., Baltensperger, U., El-Haddad, I., and Prévôt, A. S. H.: New
- 487 insights into PM_{2.5} chemical composition and sources in two major cities in China during extreme haze
- 488 events using aerosol mass spectrometry, Atmos. Chem. Phys., 16, 3207-3225, 10.5194/acp-16-3207-
- 489 2016, 2016.
- 490 Fan, Y., Liu, C. Q., Li, L., Ren, L., Ren, H., Zhang, Z., Li, Q., Wang, S., Hu, W., Deng, J., Wu, L., Zhong,
- 491 S., Zhao, Y., Pavuluri, C. M., Li, X., Pan, X., Sun, Y., Wang, Z., Kawamura, K., Shi, Z., and Fu, P.: Large
- 492 contributions of biogenic and anthropogenic sources to fine organic aerosols in Tianjin, North China,
- 493 Atmos. Chem. Phys., 20, 117-137, 10.5194/acp-20-117-2020, 2020.
- 494 Feng, T., Zhao, S., Bei, N., Wu, J., Liu, S., Li, X., Liu, L., Qian, Y., Yang, Q., Wang, Y., Zhou, W., Cao,
- 495 J., and Li, G.: Secondary organic aerosol enhanced by increasing atmospheric oxidizing capacity in
- 496 Beijing-Tianjin-Hebei (BTH), China, Atmos. Chem. Phys., 19, 7429-7443, 10.5194/acp-19-7429-2019,
- 497 2019.
- 498 Fu, P., Kawamura, K., Kanaya, Y., and Wang, Z.: Contributions of biogenic volatile organic compounds
- 499 to the formation of secondary organic aerosols over Mt. Tai, Central East China, Atmos. Environ., 44,
- 500 4817-4826, https://doi.org/10.1016/j.atmosenv.2010.08.040, 2010.

- 501 Fu, P., Kawamura, K., Chen, J., and Miyazaki, Y.: Secondary Production of Organic Aerosols from
- 502 Biogenic VOCs over Mt. Fuji, Japan, Environ. Sci. Technol., 48, 8491-8497, 10.1021/es500794d, 2014.
- 503 Garmash, O., Rissanen, M. P., Pullinen, I., Schmitt, S., Kausiala, O., Tillmann, R., Zhao, D., Percival, C.,
- 504 Bannan, T. J., Priestley, M., Hallquist, Å. M., Kleist, E., Kiendler-Scharr, A., Hallquist, M., Berndt, T.,
- 505 McFiggans, G., Wildt, J., Mentel, T. F., and Ehn, M.: Multi-generation OH oxidation as a source for
- 506 highly oxygenated organic molecules from aromatics, Atmos. Chem. Phys., 20, 515-537, 10.5194/acp-
- 507 20-515-2020, 2020.
- 508 Ge, X., Li, L., Chen, Y., Chen, H., Wu, D., Wang, J., Xie, X., Ge, S., Ye, Z., Xu, J., and Chen, M.: Aerosol
- 509 characteristics and sources in Yangzhou, China resolved by offline aerosol mass spectrometry and other
- 510 techniques, Environ. Pollut., 225, 74-85, 10.1016/j.envpol.2017.03.044, 2017.
- 511 Gelencsér, A., Siszler, K., and Hlavay, J.: Toluene-Benzene Concentration Ratio as a Tool for
- 512 Characterizing the Distance from Vehicular Emission Sources, Environ. Sci. Technol., 31, 2869-2872,
- 513 10.1021/es970004c, 1997.
- 514 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
- 515 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci.
- 516 USA, 111, 17373-17378, 10.1073/pnas.1419604111, 2014.
- 517 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J.,
- 518 Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y.,
- 519 Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.
- 520 F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation,
- 521 properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys.,
- 522 9, 5155-5236, 10.5194/acp-9-5155-2009, 2009.

- 523 Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F., Aiken, A. C., Chen, Q., Martin,
- 524 S. T., Farmer, D. K., and Artaxo, P.: A simplified description of the evolution of organic aerosol
- 525 composition in the atmosphere, Geophys. Res. Lett., 37, L08803, 10.1029/2010GL042737, 2010.
- 526 Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.: Tropospheric
- 527 aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase, Chem. Rev.,
- 528 115, 4259-4334, 10.1021/cr500447k, 2015.
- 529 Hu, W., Hu, M., Hu, W., Jimenez, J. L., Yuan, B., Chen, W., Wang, M., Wu, Y., Chen, C., Wang, Z., Peng,
- 530 J., Zeng, L., and Shao, M.: Chemical composition, sources, and aging process of submicron aerosols in
- 531 Beijing: Contrast between summer and winter, J. Geophys. Res. Atmos., 121, 1955-1977,
- 532 doi:10.1002/2015JD024020, 2016.
- 533 Hu, W., Hu, M., Hu, W. W., Zheng, J., Chen, C., Wu, Y., and Guo, S.: Seasonal variations in high time-
- 534 resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the
- 535 megacity Beijing, Atmos. Chem. Phys., 17, 9979-10000, 10.5194/acp-17-9979-2017, 2017.
- 536 Hua, Y., Wang, S., Jiang, J., Zhou, W., Xu, Q., Li, X., Liu, B., Zhang, D., and Zheng, M.: Characteristics
- 537 and sources of aerosol pollution at a polluted rural site southwest in Beijing, China, Sci. Total Environ.,
- 538 626, 519-527, 10.1016/j.scitotenv.2018.01.047, 2018.
- 539 Huang, D. D., Li, Y. J., Lee, B. P., and Chan, C. K.: Analysis of organic sulfur compounds in atmospheric
- 540 aerosols at the HKUST supersite in Hong Kong using HR-ToF-AMS, Environ. Sci. Technol., 49, 3672-
- 541 3679, 10.1021/es5056269, 2015.
- 542 Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K. R., Slowik, J. G.,
- 543 Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa, M., Ciarelli, G.,
- 544 Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J., Zimmermann, R., An, Z., Szidat,

- 545 S., Baltensperger, U., Haddad, I. E., and Prevot, A. S. H.: High secondary aerosol contribution to
- 546 particulate pollution during haze events in China, Nature, 514, 218-222, 10.1038/nature13774, 2014.
- 547 Huang, R. J., Wang, Y., Cao, J., Lin, C., Duan, J., Chen, Q., Li, Y., Gu, Y., Yan, J., Xu, W., Fröhlich, R.,
- 548 Canonaco, F., Bozzetti, C., Ovadnevaite, J., Ceburnis, D., Canagaratna, M. R., Jayne, J., Worsnop, D. R.,
- 549 El-Haddad, I., Prévôt, A. S. H., and O'Dowd, C. D.: Primary emissions versus secondary formation of
- 550 fine particulate matter in the most polluted city (Shijiazhuang) in North China, Atmos. Chem. Phys., 19,
- 551 2283-2298, 10.5194/acp-19-2283-2019, 2019.
- 552 Huang, X. F., He, L. Y., Hu, M., Canagaratna, M. R., Sun, Y., Zhang, Q., Zhu, T., Xue, L., Zeng, L. W.,
- 553 Liu, X. G., Zhang, Y. H., Jayne, J. T., Ng, N. L., and Worsnop, D. R.: Highly time-resolved chemical
- 554 characterization of atmospheric submicron particles during 2008 Beijing Olympic Games using an
- 555 Aerodyne High-Resolution Aerosol Mass Spectrometer, Atmos. Chem. Phys., 10, 8933-8945,
- 556 10.5194/acp-10-8933-2010, 2010.
- 557 IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
- 558 Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press,
- 559 Cambridge, United Kingdom and New York, NY, USA, 1535 pp., 2013.
- 560 Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R.
- 561 C., Zhang, X., Smith, K. A., Morris, J. W., and Davidovits, P.: Ambient aerosol sampling using the
- aerodyne aerosol mass spectrometer, J. Geophys. Res. Atmos., 108, 8425, 10.1029/2001JD001213, 2003.
- 563 Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna, M. R., Wilson, K. R., Altieri,
- 564 K. E., Mazzoleni, L. R., Wozniak, A. S., Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop,
- 565 D. R.: Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol,
- 566 Nat. Chem., 3, 133-139, 10.1038/nchem.948, 2011.

- 567 Li, J., Liu, Q., Li, Y., Liu, T., Huang, D., Zheng, J., Zhu, W., Hu, M., Wu, Y., Lou, S., Hallquist, A. M.,
- 568 Hallquist, M., Chan, C. K., Canonaco, F., Prevot, A. S. H., Fung, J. C. H., Lau, A. K. H., and Yu, J. Z.:
- 569 Characterization of Aerosol Aging Potentials at Suburban Sites in Northern and Southern China Utilizing
- 570 a Potential Aerosol Mass (Go:PAM) Reactor and an Aerosol Mass Spectrometer, J. Geophys. Res. Atmos.,
- 571 124, 5629-5649, 10.1029/2018jd029904, 2019a.
- 572 Li, J., Cao, L., Gao, W., He, L., Yan, Y., Ji, D., Liu, Z., and Wang, Y.: Seasonal variations in the high
- 573 time-resolved aerosol composition, sources, and chemical process of background submicron particles in
- 574 North China Plain, Atmos. Chem. Phys. Discuss., 2020, 1-26, 10.5194/acp-2020-213, 2020.
- 575 Li, K., Jacob, D. J., Liao, H., Shen, L., Zhang, Q., and Bates, K. H.: Anthropogenic drivers of 2013-2017
- 576 trends in summer surface ozone in China, Proc. Natl. Acad. Sci. USA, 116, 422-427,
- 577 10.1073/pnas.1812168116, 2019b.
- 578 Li, K., Jacob, D. J., Liao, H., Zhu, J., Shah, V., Shen, L., Bates, K. H., Zhang, Q., and Zhai, S.: A two-
- 579 pollutant strategy for improving ozone and particulate air quality in China, Nat. Geosci., 12, 906-910,
- 580 10.1038/s41561-019-0464-x, 2019c.
- 581 Li, L., Ren, L., Ren, H., Yue, S., Xie, Q., Zhao, W., Kang, M., Li, J., Wang, Z., Sun, Y., and Fu, P.:
- 582 Molecular Characterization and Seasonal Variation in Primary and Secondary Organic Aerosols in
- 583 Beijing, China, J. Geophys. Res. Atmos., 123, 12,394-312,412, 10.1029/2018jd028527, 2018a.
- 584 Li, Q., Zhang, L., Wang, T., Wang, Z., Fu, X., and Zhang, Q.: "New" Reactive Nitrogen Chemistry
- 585 Reshapes the Relationship of Ozone to Its Precursors, Environ. Sci. Technol., 52, 2810-2818,
- 586 10.1021/acs.est.7b05771, 2018b.
- 587 Li, Y. J., Lee, B. Y. L., Yu, J. Z., Ng, N. L., and Chan, C. K.: Evaluating the degree of oxygenation of
- 588 organic aerosol during foggy and hazy days in Hong Kong using high-resolution time-of-flight aerosol

- 589 mass spectrometry (HR-ToF-AMS), Atmos. Chem. Phys., 13, 8739-8753, 10.5194/acp-13-8739-2013,
- 590 2013.
- 591 Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H., and Chan, C. K.: Seasonal characteristics of fine particulate
- 592 matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS)
- 593 measurements at the HKUST Supersite in Hong Kong, Atmos. Chem. Phys., 15, 37-53, 10.5194/acp-15-
- 594 37-2015, 2015.
- 595 Li, Y. J., Sun, Y., Zhang, Q., Li, X., Li, M., Zhou, Z., and Chan, C. K.: Real-time chemical
- 596 characterization of atmospheric particulate matter in China: A review, Atmos. Environ., 158, 270-304,
- 597 https://doi.org/10.1016/j.atmosenv.2017.02.027, 2017.
- 598 Liu, H., Qi, L., Liang, C., Deng, F., Man, H., and He, K.: How aging process changes characteristics of
- 599 vehicle emissions? A review, Crit. Rev. Environ. Sci. Technol., 10.1080/10643389.2019.1669402, 2019a.
- 600 Liu, M., Huang, X., Song, Y., Tang, J., Cao, J., Zhang, X., Zhang, Q., Wang, S., Xu, T., Kang, L., Cai,
- 601 X., Zhang, H., Yang, F., Wang, H., Yu, J. Z., Lau, A. K. H., He, L., Huang, X., Duan, L., Ding, A., Xue,
- 602 L., Gao, J., Liu, B., and Zhu, T.: Ammonia emission control in China would mitigate haze pollution and
- 603 nitrogen deposition, but worsen acid rain, Proc. Natl. Acad. Sci. USA, 116, 7760-7765,
- 604 10.1073/pnas.1814880116, 2019b.
- Liu, Q., Sun, Y., Hu, B., Liu, Z., Akio, S., and Wang, Y.: In situ measurement of PM₁ organic aerosol in
 Beijing winter using a high-resolution aerosol mass spectrometer, Chinese. Sci. Bull., 57, 819-826,
 10.1007/s11434-011-4886-0, 2012.
- 608 McKeen, S. A., Liu, S. C., Hsie, E.-Y., Lin, X., Bradshaw, J. D., Smyth, S., Gregory, G. L., and Blake,
- 609 D. R.: Hydrocarbon ratios during PEM-WEST A: A model perspective, J. Geophys. Res. Atmos., 101,
- 610 2087-2109, 10.1029/95jd02733, 1996.

- 611 Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of composition-
- 612 dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data, Aerosol
- 613 Sci. Tech., 46, 258-271, 10.1080/02786826.2011.620041, 2012.
- 614 Molina, M. J., and Molina, L. T.: Megacities and atmospheric pollution, J. Air Waste Manage., 54, 644-
- 615 680, 10.1080/10473289.2004.10470936, 2004.
- 616 Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.:
- 617 Changes in organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem.
- 618 Phys., 11, 6465-6474, 10.5194/acp-11-6465-2011, 2011.
- 619 Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/particle
- 620 partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580-2585,
- 621 10.1021/es950943+, 1996.
- 622 Paatero, P., and Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal
- 623 utilization of error estimates of data values, Environmetrics, 5, 111-126, 10.1002/env.3170050203, 1994.
- 624 Paatero, P.: Least squares formulation of robust non-negative factor analysis, Chemometr. Intell. Lab, 37,
- 625 23-35, 10.1016/S0169-7439(96)00044-5, 1997.
- 626 Parrish, D. D., Stohl, A., Forster, C., Atlas, E. L., Blake, D. R., Goldan, P. D., Kuster, W. C., and de Gouw,
- 627 J. A.: Effects of mixing on evolution of hydrocarbon ratios in the troposphere, J. Geophys. Res. Atmos.,
- 628 112, 10.1029/2006jd007583, 2007.
- 629 Peng, J., Hu, M., Gong, Z., Tian, X., Wang, M., Zheng, J., Guo, Q., Cao, W., Lv, W., Hu, W., Wu, Z., and
- 630 Guo, S.: Evolution of secondary inorganic and organic aerosols during transport: A case study at a
- 631 regional receptor site, Environ. Pollut., 218, 794-803, 10.1016/j.envpol.2016.08.003, 2016.
- 632 Qin, Y. M., Li, Y. J., Wang, H., Lee, B. P. Y. L., Huang, D. D., and Chan, C. K.: Particulate matter (PM)

- 633 episodes at a suburban site in Hong Kong: evolution of PM characteristics and role of photochemistry in
- 634 secondary aerosol formation, Atmos. Chem. Phys., 16, 14131-14145, 10.5194/acp-16-14131-2016, 2016.
- 635 Qin, Y. M., Tan, H. B., Li, Y. J., Schurman, M. I., Li, F., Canonaco, F., Prévôt, A. S. H., and Chan, C. K.:
- 636 Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the
- 637 periphery of Guangzhou, China, Atmos. Chem. Phys., 17, 10245-10258, 10.5194/acp-17-10245-2017,
- 638 2017.
- 639 Schnell, J. L., and Prather, M. J.: Co-occurrence of extremes in surface ozone, particulate matter, and
- 640 temperature over eastern North America, Proc. Natl. Acad. Sci. USA, 114, 2854-2859,
- 641 10.1073/pnas.1614453114, 2017.
- 642 Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate
- 643 change, John Wiley & Sons, Hoboken, NJ, 2016.
- 644 Shi, Z., Vu, T., Kotthaus, S., Harrison, R. M., Grimmond, S., Yue, S., Zhu, T., Lee, J., Han, Y., Demuzere,
- 645 M., Dunmore, R. E., Ren, L., Liu, D., Wang, Y., Wild, O., Allan, J., Acton, W. J., Barlow, J., Barratt, B.,
- 646 Beddows, D., Bloss, W. J., Calzolai, G., Carruthers, D., Carslaw, D. C., Chan, Q., Chatzidiakou, L., Chen,
- 647 Y., Crilley, L., Coe, H., Dai, T., Doherty, R., Duan, F., Fu, P., Ge, B., Ge, M., Guan, D., Hamilton, J. F.,
- 648 He, K., Heal, M., Heard, D., Hewitt, C. N., Hollaway, M., Hu, M., Ji, D., Jiang, X., Jones, R., Kalberer,
- 649 M., Kelly, F. J., Kramer, L., Langford, B., Lin, C., Lewis, A. C., Li, J., Li, W., Liu, H., Liu, J., Loh, M.,
- 650 Lu, K., Lucarelli, F., Mann, G., McFiggans, G., Miller, M. R., Mills, G., Monk, P., Nemitz, E., O'Connor,
- 651 F., Ouyang, B., Palmer, P. I., Percival, C., Popoola, O., Reeves, C., Rickard, A. R., Shao, L., Shi, G.,
- 652 Spracklen, D., Stevenson, D., Sun, Y., Sun, Z., Tao, S., Tong, S., Wang, Q., Wang, W., Wang, X., Wang,
- 653 X., Wang, Z., Wei, L., Whalley, L., Wu, X., Wu, Z., Xie, P., Yang, F., Zhang, Q., Zhang, Y., Zhang, Y.,
- 654 and Zheng, M.: Introduction to the special issue "In-depth study of air pollution sources and processes

- 655 within Beijing and its surrounding region (APHH-Beijing)", Atmos. Chem. Phys., 19, 7519-7546,
- 656 10.5194/acp-19-7519-2019, 2019.
- 657 Sun, J., Zhang, Q., Canagaratna, M. R., Zhang, Y., Ng, N. L., Sun, Y., Jayne, J. T., Zhang, X., Zhang, X.,
- 658 and Worsnop, D. R.: Highly time- and size-resolved characterization of submicron aerosol particles in
- 659 Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmos. Environ., 44, 131-140,
- 660 10.1016/j.atmosenv.2009.03.020, 2010.
- 661 Sun, P., Nie, W., Chi, X., Xie, Y., Huang, X., Xu, Z., Qi, X., Xu, Z., Wang, L., Wang, T., Zhang, Q., and
- 662 Ding, A.: Two years of online measurement of fine particulate nitrate in the western Yangtze River Delta:
- 663 influences of thermodynamics and N₂O₅ hydrolysis, Atmos. Chem. Phys., 18, 17177-17190,
- 664 10.5194/acp-18-17177-2018, 2018a.
- 665 Sun, Y., Wang, Z., Dong, H., Yang, T., Li, J., Pan, X., Chen, P., and Jayne, J. T.: Characterization of
- summer organic and inorganic aerosols in Beijing, China with an Aerosol Chemical Speciation Monitor,
- 667 Atmos. Environ., 51, 250-259, 10.1016/j.atmosenv.2012.01.013, 2012.
- 668 Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The impact of relative humidity on
- 669 aerosol composition and evolution processes during wintertime in Beijing, China, Atmos. Environ., 77,
- 670 927-934, https://doi.org/10.1016/j.atmosenv.2013.06.019, 2013a.
- 671 Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng, H., Ji, D., Li, J., Tang, X., Fu, P., and
- 672 Wang, Z.: Rapid formation and evolution of an extreme haze episode in Northern China during winter
- 673 2015, Sci. Rep., 6, 27151, 10.1038/srep27151, 2016a.
- 674 Sun, Y., Du, W., Fu, P., Wang, Q., Li, J., Ge, X., Zhang, Q., Zhu, C., Ren, L., Xu, W., Zhao, J., Han, T.,
- 675 Worsnop, D. R., and Wang, Z.: Primary and secondary aerosols in Beijing in winter: sources, variations
- 676 and processes, Atmos. Chem. Phys., 16, 8309-8329, 10.5194/acp-16-8309-2016, 2016b.

- 677 Sun, Y., Xu, W., Zhang, Q., Jiang, Q., Canonaco, F., Prévôt, A. S. H., Fu, P., Li, J., Jayne, J., Worsnop,
- 678 D. R., and Wang, Z.: Source apportionment of organic aerosol from 2-year highly time-resolved
- 679 measurements by an aerosol chemical speciation monitor in Beijing, China, Atmos. Chem. Phys., 18,
- 680 8469-8489, 10.5194/acp-18-8469-2018, 2018b.
- 681 Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol
- 682 composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys., 13, 4577-
- 683 4592, 10.5194/acp-13-4577-2013, 2013b.
- 684 Sun, Y. L., Jiang, Q., Wang, Z. F., Fu, P. Q., Li, J., Yang, T., and Yin, Y.: Investigation of the sources and
- 685 evolution processes of severe haze pollution in Beijing in January 2013, J. Geophys. Res. Atmos., 119,
- 686 4380-4398, 10.1002/2014jd021641, 2014.
- 687 Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and
- 688 Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in Beijing, China:
- 689 seasonal variations, meteorological effects, and source analysis, Atmos. Chem. Phys., 15, 10149-10165,
- 690 10.5194/acp-15-10149-2015, 2015.
- 691 Tan, Z., Lu, K., Jiang, M., Su, R., Wang, H., Lou, S., Fu, Q., Zhai, C., Tan, Q., Yue, D., Chen, D., Wang,
- 692 Z., Xie, S., Zeng, L., and Zhang, Y.: Daytime atmospheric oxidation capacity in four Chinese megacities
- 693 during the photochemically polluted season: a case study based on box model simulation, Atmos. Chem.
- 694 Phys., 19, 3493-3513, 10.5194/acp-19-3493-2019, 2019.
- 695 Tie, X., Huang, R.-J., Cao, J., Zhang, Q., Cheng, Y., Su, H., Chang, D., Poeschl, U., Hoffmann, T., Dusek,
- 696 U., Li, G., Worsnop, D. R., and O'Dowd, C. D.: Severe Pollution in China Amplified by Atmospheric
- 697 Moisture, Sci. Rep., 7, 10.1038/s41598-017-15909-1, 2017.
- 698 Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C., Bianchi,

- 699 F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C., Craven, J. S., Duplissy, J., Adamov, A.,
- 700 Almeida, J., Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S., Flagan, R. C.,
- 701 Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T., Junninen, H.,
- 702 Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kürten, A., Laaksonen, A., Lawler, M., Leiminger,
- 703 M., Mathot, S., Möhler, O., Nieminen, T., Onnela, A., Petäjä, T., Piel, F. M., Miettinen, P., Rissanen, M.
- 704 P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipilä, M., Smith, J. N., Steiner, G., Tomè,
- 705 A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S.,
- 706 Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, I., Worsnop, D. R., Donahue, N. M., and
- 707 Baltensperger, U.: The role of low-volatility organic compounds in initial particle growth in the
- 708 atmosphere, Nature, 533, 527-531, 10.1038/nature18271, 2016.
- 709 Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., and Jimenez, J. L.: Interpretation of
- 710 organic components from positive matrix factorization of aerosol mass spectrometric data, Atmos. Chem.
- 711 Phys., 9, 2891-2918, 10.5194/acp-9-2891-2009, 2009.
- 712 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S.,
- 713 Meng, J., Li, J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J.,
- 714 Tian, P., Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W.,
- 715 Huang, Y., Wang, Y., Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D.,
- 716 Liss, P. S., Duce, R. A., Kolb, C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to
- 717 Chinese haze, Proc. Natl. Acad. Sci. USA, 113, 13630-13635, 10.1073/pnas.1616540113, 2016.
- 718 Wang, Q., Sun, Y., Xu, W., Du, W., Zhou, L., Tang, G., Chen, C., Cheng, X., Zhao, X., Ji, D., Han, T.,
- 719 Wang, Z., Li, J., and Wang, Z.: Vertically resolved characteristics of air pollution during two severe
- 720 winter haze episodes in urban Beijing, China, Atmos. Chem. Phys., 18, 2495-2509, 10.5194/acp-18-

- 721 2495-2018, 2018.
- 722 Wang, Y. C., Huang, R. J., Ni, H. Y., Chen, Y., Wang, Q. Y., Li, G. H., Tie, X. X., Shen, Z. X., Huang, Y.,
- 723 Liu, S. X., Dong, W. M., Xue, P., Fröhlich, R., Canonaco, F., Elser, M., Daellenbach, K. R., Bozzetti, C.,
- 724 El Haddad, I., Prévôt, A. S. H., Canagaratna, M. R., Worsnop, D. R., and Cao, J. J.: Chemical composition,
- 725 sources and secondary processes of aerosols in Baoji city of northwest China, Atmos. Environ., 158, 128-
- 726 137, https://doi.org/10.1016/j.atmosenv.2017.03.026, 2017.
- 727 Wu, Y., Ge, X., Wang, J., Shen, Y., Ye, Z., Ge, S., Wu, Y., Yu, H., and Chen, M.: Responses of secondary
- 728 aerosols to relative humidity and photochemical activities in an industrialized environment during late
- 729 winter, Atmos. Environ., 193, 66-78, 10.1016/j.atmosenv.2018.09.008, 2018.
- 730 Xie, Q., Li, Y., Yue, S., Su, S., Cao, D., Xu, Y., Chen, J., Tong, H., Su, H., Cheng, Y., Zhao, W., Hu, W.,
- 731 Wang, Z., Yang, T., Pan, X., Sun, Y., Wang, Z., Liu, C.-Q., Kawamura, K., Jiang, G., Shiraiwa, M., and
- 732 Fu, P.: Increase of High Molecular Weight Organosulfate With Intensifying Urban Air Pollution in the
- 733 Megacity Beijing, J. Geophys. Res. Atmos., 125, e2019JD032200, 10.1029/2019jd032200, 2020.
- 734 Xu, J., Zhang, Q., Chen, M., Ge, X., Ren, J., and Qin, D.: Chemical composition, sources, and processes
- 735 of urban aerosols during summertime in northwest China: Insights from high-resolution aerosol mass
- 736 spectrometry, Atmos. Chem. Phys., 14, 12593-12611, 10.5194/acp-14-12593-2014, 2014.
- 737 Xu, J., Shi, J., Zhang, Q., Ge, X., Canonaco, F., Prévôt, A. S. H., Vonwiller, M., Szidat, S., Ge, J., Ma, J.,
- 738 An, Y., Kang, S., and Qin, D.: Wintertime organic and inorganic aerosols in Lanzhou, China: Sources,
- 739 processes, and comparison with the results during summer, Atmos. Chem. Phys., 16, 14937-14957,
- 740 10.5194/acp-16-14937-2016, 2016.
- 741 Xu, Q., Wang, S., Jiang, J., Bhattarai, N., Li, X., Chang, X., Qiu, X., Zheng, M., Hua, Y., and Hao, J.:
- 742 Nitrate dominates the chemical composition of PM_{2.5} during haze event in Beijing, China, Sci. Total

- 743 Environ., 689, 1293-1303, 10.1016/j.scitotenv.2019.06.294, 2019a.
- 744 Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J., Fu, P., Wang, Z., Worsnop, D.
- 745 R., and Sun, Y.: Effects of aqueous-phase and photochemical processing on secondary organic aerosol
- formation and evolution in Beijing, China, Environ. Sci. Technol., 51, 762-770, 10.1021/acs.est.6b04498,
- 747 2017.
- 748 Xu, W., Sun, Y., Wang, Q., Zhao, J., Wang, J., Ge, X., Xie, C., Zhou, W., Du, W., Li, J., Fu, P., Wang, Z.,
- 749 Worsnop, D. R., and Coe, H.: Changes in aerosol chemistry from 2014 to 2016 in winter in Beijing:
- 750 Insights from high-resolution aerosol mass spectrometry, J. Geophys. Res. Atmos., 124, 1132-1147,
- 751 10.1029/2018jd029245, 2019b.
- 752 Yang, Y., Shao, M., Keßel, S., Li, Y., Lu, K., Lu, S., Williams, J., Zhang, Y., Zeng, L., Nölscher, A. C.,
- 753 Wu, Y., Wang, X., and Zheng, J.: How the OH reactivity affects the ozone production efficiency: case
- 754 studies in Beijing and Heshan, China, Atmos. Chem. Phys., 17, 7127-7142, 10.5194/acp-17-7127-2017,
- 755 2017.
- 756 Ye, Z., Li, Q., Liu, J., Luo, S., Zhou, Q., Bi, C., Ma, S., Chen, Y., Chen, H., Li, L., and Ge, X.:

757 Investigation of submicron aerosol characteristics in Changzhou, China: Composition, source, and

- comparison with co-collected PM_{2.5}, Chemosphere, 183, 176-185, 10.1016/j.chemosphere.2017.05.094,
- 759 2017.
- 760 Yuan, B., Shao, M., de Gouw, J., Parrish, D. D., Lu, S., Wang, M., Zeng, L., Zhang, Q., Song, Y., Zhang,
- 761 J., and Hu, M.: Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation
- 762 of positive matrix factorization (PMF) analysis, J. Geophys. Res. Atmos., 117, 10.1029/2012jd018236,
- 763 2012.
- 764 Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron

- 765 aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887-2903,
- 766 10.5194/acp-14-2887-2014, 2014.
- 767 Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., and Sun, Y.:
- 768 Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review,
- 769 Anal. Bioanal. Chem., 401, 3045-3067, 10.1007/s00216-011-5355-y, 2011.
- 770 Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu, X., Wang, J., He, H., Liu, W., Ding,
- 771 Y., Lei, Y., Li, J., Wang, Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L., Geng, G., Hong, C.,
- 772 Li, M., Liu, F., Zheng, B., Cao, J., Ding, A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K.,
- 773 and Hao, J.: Drivers of improved PM_{2.5} air quality in China from 2013 to 2017, Proc. Natl. Acad. Sci.
- 774 USA, 116, 24463-24469, 10.1073/pnas.1907956116, 2019.